
JOURNAL OF 
PURE AND 
APPLIED ALGEBRA 

ELSEVIER Journal of Pure and Applied Algebra 116 (1997) 99-l 13 

On the construction of the Grothendieck fundamental group 
of a topos by paths 

Marta Bunge”,*, Ieke Moerdijkb 
a Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, 

Montreal, QC, Canada H3A 2K6 
b Mathematical Institute, University of Utrecht, P. 0. Box 80.010, 3508 TA Utrecht. Netherlands 

Received 27 January 1996 

Dedicated to Peter Freyd on his 60th Birthday 

Abstract 

The purpose of this paper is to compare the construction of the Grothendieck fundamental 
group of a topos using locally constant sheaves, with the construction using paths given by 
Moerdijk and Wraith. Our discussion focuses on the Grothendieck fundamental group in the 
general case of an unpointed (possibly pointless) topos, as constructed by Bunge. Corresponding 
results for topoi with a chosen base-point are then easily derived. The main result states that 
the basic comparison map from the paths fundamental group to the (unpointed version of the) 
Grothendieck fundamental group is an equivalence, under assumptions of the “locally paths 
simply connected” sort, as for topological spaces. @ 1997 Elsevier Science B.V. 

1991 Math. Subj. Class.: 18B, 18F, 55P, 55Q 

0. Introduction 

The purpose of this paper is to compare the construction of the Grothendieck fun- 

damental group of a topos using locally constant sheaves [4] with the construction 

using paths given in [18, 131. Our discussion focuses on the Grothendieck fundamental 

group in the general case of an unpointed (possibly pointless) topos, as in [2]; corre- 

sponding results for topoi with a chosen base-point are then easily derived. The main 

result states that the basic comparison map from the paths fundamental group to the 
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(unpointed version of the) Grothendieck fundamental group is an equivalence, under 

assumptions of the “locally path simply connected” sort, as for topological spaces. 

1. Locally constant sheaves and the Grothendieck fundamental group 

In this section we will briefly review Grothendieck’s theory of the fundamental group 

[4, 51 of a pointed topos, and some of its refinements presented in [ 1, 151. 

Throughout this section, as well as in the rest of the paper, 6 denotes a connected 

and locally connected topos over an arbitrary base topos 9; its structure map will be 

denoted by y : d -+ 9’. We will often use notation and terminology as if 9’ were the 

category of sets, as usual. 

Recall that an object of L of d is said to be locally constant if there exists an 

epimorphism U-1 in 8 and an isomorphism U x L = U x y*(S) over U, for some 

set S (i.e., some object of 9); the object U is then said to trivialize L. One also 

says that d/L -+ d is a covering (projection) of 8, or that L is a covering of B. A 

geometric morphism P -+ d is called a covering projection if it is equivalent (over 

8) to one such of the form b/L -+ B. A locally constant sheaf L (i.e., an object of 

6) is said to be finite if the set S above is finite. We denote by LC(b), FLC(I) 

and XC(b) the full subcategories of d consisting of locally constant objects, of finite 

locally constant objects, and of sums of locally constant objects, respectively. 

For the case Y = Set, and under the assumption that 8 has a chosen base-point 

p : Set -+ 8, Grothendieck’s Galois theory [4] shows that the category FLC(I) is 

equivalent to the category of finite continuous G-sets, by an equivalence which iden- 

tifies p* : FLC(b) -+ Set with the forgetful functor, for a unique profinite group G. 

This G is then called the projinite fundamental group of I and denoted rcyf(b, p). 
The construction of the profinite fundamental group does not use the assumption 

that B is locally connected. Using this assumption, one can construct in an analogous 

way a localic group G such that the category SLC(I) is equivalent to the category 

23G of continuous G-sets (relative to Y), again by an equivalence which identifies p* 
with the forgetful functor. This time G is a prodiscrete localic group, denoted rci(B, p). 
(This construction is given in [15].) 

In the definition of locally constant sheaves (or objects), the trivializing object U can 

vary over all epimorphisms U-++l. The topos B is said to be locally simply connected 

(1.s.c.) if there is one such epimorphism U-1 which trivializes all locally constant 

objects in 8. This case is discussed in detail in [l]. One has the following equivalent 

descriptions of local simple connectivity: 

(i) d is locally simply connected, 

(ii) LC(b) = %X(b), i.e., locally constant objects are closed under sums, 

(iii) the prodiscrete group ~~l(&?,p) is discrete. 

In this case, there is a universal cover d + 8, i.e., d = 8/E for a locally constant 

object 2, which has the property that ni(B, p) = Aut( I). Moreover, ,? is universal in 

the usual sense that every connected object from LC(&‘) is a quotient of 1. 
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2. The coverings fundamental group of a topos in the absence of a point 

We review an alternative construction of XC(b) along the lines of [2], for the case 
of a connected, locally connected topos 8 over a base topos 9’. In this case, there is 
no chosen basepoint of 8, and SLC(B) is equivalent to the category BG of continuous 
G-sets (relative to Y), with G a localic groupoid, denoted rci(&). It follows readily 
from the construction that rci(&) represents H’(B, -). 

For any epimorphism U+l, denote by 59” the pushout topos 

where all the mappings are the canonical ones, and y! denotes the left adjoint of y*, 
which exists because y is assumed to be locally connected. Thus, y!(U) is the set 
of connected components of U (or of b/U). We now sketch a proof of the main 
properties of 9&, which then identifies 99” with the full subcategory of d consisting 
of the locally constant objects trivialized by U. 

Proposition 2.1. The topos 29~ is connected and atomic, and the map QU : d + 9~ is 
connected. 

Proof. Using [2, Lemma 2.31 we see that since cpu and pu are locally connected maps, 
so are pu and a~; moreover, ou is connected since pu is. Using then the properties 
of totally disconnected maps from [2, Section 11, we observe that pu is totally dis- 
connected and, since it is also locally connected, it must be a local homeomorphism 
(a slice). Using that pu is of effective descent, it follows that y!(U) is the set of 
objects of a discrete groupoid Gu with the property that ‘9” = 99Gr~. In particular, 9~ 
is a connected, atomic topos. 0 

The construction of ‘9~ is evidently mnctorial in U. Thus, for epimorphisms U-1, 
V-+1, a map U + V yields a topos map 5%~ + Y,, induced by a groupoid homomor- 
phism h”v:Gu + Gv, such that the diagram 

commutes. Since VU, ov are connected so is the map $I + 9~. From this it follows 
that hUV is a fall and essentially surjective functor between groupoids. This implies 
that each 59~ ---t $9’~ is in fact connected and atomic. 
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Now consider a small cofinal system in the category of all epimorphisms U-1, and 
form the inverse limit 

Y = lim $J. 

By [l 11, 22 is again connected and atomic. As a category, 9 = SLC(L?), with (T: 8 + 
SE(b) induced by the Q, a map whose inverse image is simply the inclusion functor. 
We summarize all this as follows. 

Theorem 2.2. The topos $9 = SLC(b) is connected and atomic, and the map a: 6 -+ 

9 is connected and locally connected Furthermore, 9 = 99G, where G is the localic 
groupoid obtained as the (pseudo-, or lax-) limit G = lim Gu. The groupoid G clas- 

sifies torsors, in the sense that for any group K in x there is a natural isomorphism 

Hom(G,K) 2 H’(b,K) (see [2] for details). 

Note that, in the above, G may be chosen to be etale complete and this determines 
it uniquely up to equivalence. We call G the fundamental Iocalic groupoid of d and 
denote it by rri(b). An alternative definition of n*(s) is given in [9]. When d has a 
chosen basepoint p : Y -+ 8, there is induced a point J of G, and then rri(b, p) is 
the vertex group Gj. The isomorphism Hom(zl(&‘), K) g H’(I,K) generalizes the 
isomorphism Hom(xl(b,p),K) % H’(b,K) given in [15] for the pointed case. 

3. The paths fundamental group of a topos 

As before, &’ will be a connected and locally connected topos over a fixed base 
topos Y. For any locale X in 5p, we will also write X for the associated topos of 
sheaves; this again is a topos over Y. In particular, we will consider the unit interval 
I in 9, regarded as a locale, and the paths topos &I’, constructed as the exponential of 
8 by (the topos of sheaves on) Z (cf. [6]). We recall from [18] the following result, 
which states that any connected and locally connected topos is “path connected”. 

Theorem 3.1. The map E: 8’ ---f 6 x b, defined by evaluation at the endpoints, is an 

open surjection. 

The interval I is part of the “standard” cosimplicial locale 

and by exponentiating one obtains a simplicial topos 

. ..&A= 81 - 
- T &* (1) 

In [13], a topos L’(8) is defined as the descent topos of the simplicial topos (1). 
Thus, L’(8) is the topos of objects A of 8, equipped with “descent data” &:A= $A 
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satisfying the usual cocycle condition (in L@ ). The forgetful functor ZI(&) --f d is part 

of a geometric morphism q : 8 + II(&). In [ 131, the following result is shown as an 

application of Theorem 3.1. We sketch the proof here. 

Proposition 3.2. The topos II(&) is connected and atomic, and the map q: d + II(&) 
is an open surjection. 

Proof. Since d is connected and locally connected, y : d -+ 9 is an open smjection; 

moreover, by Theorem 3.1, so is b’ + d x b. These imply (using [13]) that q: 8 -+ 
II(&) is an open stujection. To show that II(&) is atomic, consider the square 

& 1 I a% 

8x,8- II(8)x,Il(d) 
qxq 

Since q&g and (q x q)E are open stujections, so is diag. But (cf. [8]) any topos 6’ with 

open structure map 6 --) Y and open diagonal d + B x y d is atomic, Finally, since 

Cw is assumed connected and g is an open smjection, ZI(&) is connected. 0 

When B has a chosen basepoint p : Y --t 8, it follows from Proposition 3.2 that 

n(a) is equivalent to the topos 99G of continuous G-sets, by an equivalence which 

identifies the canonical point of 99G with qp : 9’ -+ ZI(&‘), for a localic group G 

(see [8]). Moreover, this group G can be chosen to be &ale-complete, and this then 

determines it uniquely up to isomorphism (cf. [ 131). We will call this unique group G 

the paths fundamental group of (a, p) and denote it by x~~~‘(&Y, p). As stated at the 

beginning of the paper, it is the purpose here to compare n(s) with XC(b) and, 

consequently, when d has a chosen basepoint p, to compare rci pa*s(E, p) with ni(b, p). 

We begin, in the next section, with the (easy) observation that there is always a natural 

comparison map. 

4. The comparison map 

As before, d is a connected and locally connected topos over 9, with associated 

morphisms cr : d + SLC( b) and q : 8’ + n(8) constructed, respectively, in Sections 2 

and 3. Recall that o is connected and locally connected, while q is an open surjection. 

Recall also that SK(b) was constructed, in the unpointed case, as a limit topos, while 

L’(a) was defined as a descent topos. 

Proposition 4.1. Up to isomorphism, there exists a unique geometric morphism cp : 
II(&) --t SLC(&), such that (pq E 0. It follows that cp is connected and locally 

connected. 
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Proof. The proof is a direct consequence of the simple fact that paths act uniquely on 

locally constant objects, and this can be proved much as in topology. Thus, to define 

the inverse image functor rp*, let L be any locally constant object in 8. We aim to 

show that L has a natural action by paths, of the form of an isomorphism 0: EGL -+ E;L 
satisfying the cocycle condition, as required in the definition of n(8). 

For this, it is of course enough to prove that for any topos 9 and any morphism 

f : 9 + &'I', there is an action t$- : f *t;(L) --+ f *E;(L), natural in f. Since L is 

locally constant in B, its pullback f*(L) along the transposed map f: Y xy I -+ B 

is locally constant in 9 x y I. The latter is the topos of internal sheaves on the 

unit interval in 9. Since the unit interval is simply connected while f*(L) is locally 

constant, it follows that f*(L) is internally constant as a sheaf on I inside 9. In other 

words, for the projection rc : 9 x y I -+ 9, the counit n*n*f*(L) + f*(L) is an 

isomorphism. 

Consider now the inclusion of the endpoints io and il, 

with the associated canonical isomorphisms nio S id E nil (which are natural in 9). 

The required isomorphism 6” : f *$L -+ f *ETL can be defined in terms of canonical 

isomorphisms, as 

One readily verifies that 6”, thus defined, is natural in f. It satisfies the appropri- 

ate cocycle condition, by similar considerations using the simple connectivity of A. 

This, then, defines a functor cp* : SLC(b) + II(&). Since q* is the forgetful f&c- 

tor, there is an obvious isomorphism between q* rp* and the inclusion fimctor o*. In 

particular, q*(p* preserves colimits and finite limits, and hence so does cp* because 

q* is faithful. Thus, cp* is the inverse image of a geometric morphism q, as claimed. 

The uniqueness of cp is due to the fact that the action 0, on locally constant objects 

is unique: indeed, exactly as in topology, there is only one such action which sat- 

isfies the cocycle condition. Finally, since q is an open surjection, it follows from 

[13] that cp must be connected and locally connected since o is. This proves the 

proposition. 0 
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Remark 4.2. Suppose that d has a chosen basepoint p, so that there are equivalences 

of pointed topoi SLC(b) g Wnl(b,p) and n(8) g &c~“~“(S, p). The map cp 

constructed above commutes with the basepoints, and hence must be induced by a 

continuous homomorphism rcFthS(b, p) 4 TC~(&, p) between (&ale-complete) localic 

groups. The fact that cp is connected and locally connected implies that the image of 

this homomorphism is a dense subgroup of the prodiscrete group ni(b, p). (We will 

make no further use of this last observation.) 

5. Path-simply connected topoi 

As before, I is a fixed connected and locally connected topos over Y. Consider the 

localic 2-simplex A in the base topos 9, together with its boundary aA. Identifying 

these locales with their topoi of sheaves, we define a topos d to be path simply 

connected (p.s.c.) if the canonical “restriction” map of exponential topoi 

is a stable surjection. 

Proposition 5.1. If B is p.s.c., then n(8) N Y. 

Proof. Consider the diagram 

Here the two rows are descent diagrams, the upper one by definition of n(8) and 

the lower one since y : 8 --+ Y is connected and locally connected, hence an effective 

descent map. Observe that the assumptions on 8 imply that the map h is a surjection, 

since r and E are (cf. Theorem 3.1). 

Recall that the topos U(8) is connected, so that 6* embeds Y as a full subcategory 

of n(8). To show that the map 6 is an equivalence of topoi, it thus suffices to prove 

that every object of n(8) is contained in the image of the ftmctor 6’. To this end, we 

prove that every object (X,0) of n(8) carries canonical descent data for the bottom 

row. More precisely, we show that the descent data 19 : EZX -+ .s;X descends along E 

to a map p : r$X -_) $X. For such a p with s*(p) = 6, the cocycle condition then 

follows immediately from the one for 8, by surjectivity of h. 
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To prove that 6 descends along E, it s&ices to prove that 8 is compatible with 

descent data for the pullback of E along itself (one of the columns in the diagram); in 

other words, it suffices to prove that the square 

P;,GX 
P; 0 

-pi&ix 

pi &LX- 
Pi @ 

P; 6X (2) 

commutes, where pi is the canonical isomorphism given by 

But, under the equivalence 8’ E! I’ x~~Xy,g) 8, this square (2) pulls back along f 
to the square expressing (a particular instance of) the cocycle condition for 8. Since 

f * is faithful, (2) thus commutes. 0 

Recall that a topos d is said to be simply connected if every locally constant object 

in B in constant, i.e., if XC(b) E Y. 

Corollary 5.2. Every p.s.c. topos d is simply connected. 

Proof. Consider the comparison map cp of Proposition 4.1. Since PZZ(8) Z Y by 

Proposition 5.1, one has for any locally constant object L of d that a*(L) g q*cp*(L) 
is a constant object in 6’. q 

6. Unique path-lifting 

The following elementary lemma is the topos theoretic analogue of the familiar 

“unique path lifting” for covering projections in topology. Here A,, denotes the standard 

n-simplex (as a locale in the base topos Y), and EO : 6’” + 6 is the evaluation at 

a vertex vg : 1 -+ A,. 

Lemma 6.1. Let L be a locally constant object in 8. Then the square 

is a pullback of topoi 
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Proof. The required universal mapping property of the pullback translates by exponen- 
tial transposition into the condition that any commutative (up to isomorphism) square 
below has a unique (up to isomorphism) diagonal fill-in 6, as indicated below 

Here io is the map corresponding to the vertex ug, and p is the canonical map. Write 
A4 = b*(L). Then, internally in 9, M is a locally constant sheaf on A,, and hence 
is (internally) constant, since A,, is contractible. The map u corresponds to a point a 
in the stalk M,, over the vertex vo, internally in 9. Since M is constant, there is 
a unique section d: A” + A4 through this point, again internally in 9? Translating back 
to the external world, d corresponds to the required diagonal 6. 0 

For the following proposition, recall from Proposition 4.1 that the locally constant 
object L carries an action by paths, hence defines an object q*(L) in II(&). 

Proposition 6.2. For L and d as above, there is a natural equivalence of topoi 

II(b)/cp*L = zI(d/L). 

Proof. The topos i7(&) is defined by the descent diagram 

-5 n(a). 

Slicing by ‘p*L and using the fact that q*‘p*L 2 L, one obtains a descent diagram 

&A/L 3 l&/L = &fL - rI(&)/(p*L 

(where the objects in QA and in 8’ corresponding to L are again simply denoted L). 
By the preceding lemma, the latter diagram is equivalent to the diagram 

@WA 3 WL)’ z$I 8/L - n(a)/cp*L. 

But, by definition, 17(8/L) is the descent topos for this diagram; thus 

II(b/L) E iI(d)/cp*L. 0 

7. The first equivalence theorem 

For a connected and locally connected topos 8, we shall now prove a first re- 
sult concerning the equivalence between II(&) and SLC(b), stated in Proposition 7.1 
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below. This result is of course well-known for topological spaces, and was proved for 

locales and localic topoi in [3], in the unpointed case. 

Recall from Section 1 that a locally simply connected topos I has a universal 

covering u : 8 + 8. This universal covering trivializes all locally constant objects in 8, 

and hence is simply connected, i.e., SLC(& Z Y. We make the stronger assumption 

that n(d) E 9, as in the case when d is path simply connected (cf. Proposition 5.1). 

Proposition 7.1. Let B be a locally simply connected topos, and assume that its 

universal cover u:d + & has the property that II(d) 2 9’. (This holds if d is path 

simply connected.) Then the comparison map cp:Il(b) + SLC(b) is an equivalence. 

Proof. Consider the diagram (cf. Proposition 4.1) 

Since cp is connected, cp* embeds SLC(b) as a full subcategory of L’(8). Moreover, 

by unicity of cp, the action of paths on locally constant objects is unique. To prove 

that cp is an equivalence, it thus suffices to show that for every object (X,8) of n(s), 

the object X = q*(X, 0) in 8 is locally constant. To this end, consider the universal 

cover u : d + 8, and the associated map n(u) : II(&f) -+ II(&). By the assumption 

on 8, the object n(u)*(X,fJ) is constant, i.e., u*(X) is a constant object in d. Thus, 

X is locally constant in 8, as required. 0 

Remark 7.2. It follows from the above, using Theorem 2.2, that n(8) = g(nr(I)), 

with xl(B) a prodiscrete localic groupoid that classifies torsors, even if no definition of 

a corresponding r~p”~~‘h”(S) is available in the 

p : Y -+ 8, the above yields an isomorphism 

7cnpaths(&, p) % 71, (a, p). 

In particular, the paths 

topos 6. 

fundamental group is discrete, since xi(B, p) is, for any 1.s.c. 

8. Locally path-simply connected topoi and the main comparison theorem 

unpointed case. For a chosen base-point 

of localic groups, 

A connected and locally connected topos 6 is said to be locally path-simply con- 
nected (1.p.s.c.) if d has a generating system {Ci} consisting of connected objects 

Ci with the property that each topos &/Ci is p.s.c. In particular, by Proposition 5.1, 

ZI(&,/Ci) % Y. 
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Theorem 8.1. For any 1.p.s.c. topos 6, the comparison map cp : L’(8) ---f SLC(b) is 

an equivalence. 

This theorem follows from Proposition 7.1 and the following two lemmas. 

Lemma 8.2. Any 1.p.s.c. topos 8 is 1.s.c. 

Proof. Let U = Ci --)) 1 be a sum of generators which covers 1. We claim that U 

trivializes any locally constant object L of d. For such an L, consider its pullback 

LI Ci = (L x Ci -+ Ci) in &/Ci. This object J!,]C~ is locally constant, hence constant by 

the assumption on Ci and Corollary 5.2 (applied to a/C,). Thus, LJCi E (Si x Ci + Ci) 

for some set Si. For two different indices i and j, the sets Si and Sj are isomorphic. 

Indeed, there is an isomorphism Si x Ci x Cj E L](Ci x Cj) E Sj x Ci x Cj, over Ci x C,. 

Pulling back along a connected component D C Ci x Cj, one obtains an isomorphism 

Si x D E Sj x D over D. Thus, Si g Sj. This shows that for each i one can take the 

same set S, so that U trivializes L, as claimed. 0 

Lemma 8.2 implies that & has a universal cover & for which the following holds. 

Lemma 8.3. For any 1.p.s.c. topos &, its universal cover d has the property that 

U(d) g Y. 

Proof. Write d = b/L, so that Ii’(d) = II(& by Proposition 6.2 (we identify L and 

‘p*L here). We have to show that every object (X + L) of II(& is constant, as an 

object of B/L. Since L defines the universal cover, it suffices to show that any such 

(X --) L) is locally constant in d/L. Cover L by sections Si : Ci -+ L from simply con- 

nected generators. For each such section, sr(X + L) is an object of II(s/Ci), hence 

is constant there (cf. Proposition 5.1). It follows that (X -+ L) is locally constant, as 

required. 0 

Proof of Theorem 8.1. The conditions reduce, using Lemmas 8.2 and 8.3, to those of 

Proposition 7.1. It follows that cp : II(&) -+ SE(&) is indeed an equivalence. 0 

Corollary 8.4. Let d be a 1.p.s.c. topos. Then II(&) is the classifying topos of 
a prodiscrete localic groupoid n’(8) that represents H’(d,-): Groups(Y) + Y. 

Further, if d has a chosen basepoint, then the canonical map 7cythS(8, p) -+ nl(b, p) 
is an isomorphism. 

9. The groupoid of paths 

As before, d is a connected and locally connected topos over a base topos Y. An 

alternative construction of the fundamental groupoid of a topos by means of paths was 

proposed in [18], under the assumption that the “evaluation at the endpoints” map 
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is locally connected. When this is the case, let 

be the unique decomposition of E into a connected and locally connected map .C followed 
by a local homeomorphism (a slice) 6. Thus, ~9 is the topos of connected components 
of 6” as an (d x b)-topos. The two maps 6s,& : 2 2 d defined by 6 are part of 
a groupoid topos 

with composition defined in the evident way using composition of paths. The “funda- 
mental group” of d was defined in [ 181 as the descent topos P’(g) of the groupoid 
topos (3). 

Observe that there is an evident comparison map of simplicial topoi relating the 
simplicial topos (1) which defines n(s) to this groupoid topos (3) defining P(J). 
Thus, we obtain a natural comparison map n(g) --+ P(6). 

Proposition 9.1. Assume 8’ ---f 8’ x 8 locally connected, as above. Then the natural 
comparison map U(8) + B(d) is an equivalence of topoi. 

This proposition is an immediate consequence of the following general lemma, the 
proof of which is easy and omitted. 

Lemma 9.2. Let f. : ??I. -+ X. be a map of simplicial topoi, and write f : 9J(?Y.) --+ 

9(.%“.) for the induced map of descent topoi. If fo is an equivalence, fi is connected, 
and f2 is a surjection, then f is an equivalence. 

The assumption of the proposition that 19~ + d x d is locally connected is related 
to the property of Q being locally path simply connected, used earlier: 

Proposition 9.3. For any 1,p.s.c. topos 8, the map 8 -P d x B is locally connected. 

Proof. The detailed proof is somewhat involved, and we only give an outline 
here. 

First, the proposition holds when d is localic. Indeed, for a connected 1.p.s.c. locale X 
one shows that X’ + X x X is locally connected by a standard topological argument 
using the evident basis of X’, given by chains of p.s.c. open sets in X. 

Next, for a general topos b, the lemma is reduced to the case of locales by using the 
cover X = X8 3 d from [7], which is connected and locally connected with contractible 
fibers. Then if 6’ is l.p.s.c., the locale X will be 1.p.s.c. as well. Thus, by the localic 
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case, X’ + X x X is a locally connected map. Now consider the square 

By [12, 171, the map cp’ is an open surjection. It thus follows that E is locally 
connected since (cp x (P)E’ is (see [13]). 0 

10. Concluding remarks 

Example 10.1. The example of the long circle which, as a topological space has trivial 
path fundamental group yet a non-trivial Chevalley group, is mentioned in [l]. As 
pointed out in [18, 31, this “anomaly” disappears if one replaces the topological space 
X by its topos of sheaves. Indeed, X has a covering space X that is connected and path 
simply connected, and this remains true for the corresponding topoi of sheaves. Since 
the conditions of Proposition 7.1 are satisfied, d = S/r(X) has the property that the 
basic comparison map cp : IZ(Sh(X)) -+ SLC(Sh(X)) is an equivalence. In particular, cp 
induces an isomorphism r~p”‘~“(Sh(X), p) E rcr(Sh(X), p), for any chosen basepoint p, 

quite unlike the topological situation. 

Remark 10.2. Let G be an &ale complete localic groupoid such that its source and 
target maps GrZ Go are connected and locally connected, and let BG be its classifying 
topos. (Recall from [8] that every topos arises in this way.) By [17], the map Gi + 
(BG)’ is an open surjection, hence an effective descent map. Thus, the exponential 
topos (BG)’ can be constructed as the classifying topos a(@) of the localic groupoid 
G! In particular, the path fundamental group of 9?G can be described in terms of paths 
in the locale Go. In many concrete examples, this leads to an explicit description of 
the path fundamental group. 

Remark 10.3. Let G be a topological groupoid such that its source and target maps are 
&ale (local homeomorphisms). Then G is &tale-complete [lo] and BG is an Btendue. 
Furthermore, 99G is 1.p.s.c. iff the space Go is locally (path) simply connected in the 
usual sense. In this case, our results imply that the Grothendieck fundamental group of 
9JG can be described in terms of paths in BG. These are “paths” c1 in Go with finitely 

many G-jumps, as 

u. = (~o,gl,~l,...,~~-2,~n-1,cl,_l~, 

where xi : [i/n, (i + 1)/n] + GO is a continuous map (for i = 0,. . . ,n - 1) and gi is an 
arrow in the groupoid G from ai_ l(i/n) to cti(i/n). 
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This applies in particular to the holonomy group HoZ(M,B) of a foliation (M,@), 

and shows that the Van Est fundamental group of a foliation [21], which agrees (more 

or less by definition, see [16]) with the Grothendieck fundamental group of the clas- 

sifying topos B(Hol(M,9)), can be described in terms of such “paths with jumps” 

in the holonomy groupoid. An explicit calculation will yield the description of the 

fundamental group of a foliation by paths discussed in [ 19, 201. 

Remark 10.4. The various constructions of the “fundamental group” considered in 

previous sections all apply to a topos d defined over an arbitrary base topos 9, i.e., to 

a morphism y : B + 9. If &’ is a 1.p.s.c. topos over 9, all the constructions have been 

shown to agree. It follows that the constructions are stable under change-of-base, in 

the sense that for any map f : Y' + 9, the canonical map 

n(s x,qo Y’ + 9’) --+ zI(Q + 9”) xy Y’ (4) 

is an equivalence of topoi. Indeed, by Proposition 9.1, the topos II(8 -+ Y’) can be 

constructed as the descent topos of a groupoid topos XZ 8. This groupoid topos has 

the property that X -+ &x d is localic (in fact, a slice), so that this descent construction 

is pullback stable [14]. Since the construction of X itself is evidently stable as well, 

the claimed equivalence (4) follows. 

Thus, for example, when y : d + Y has section p : Y + 67, one obtains an iso- 

morphism of groups in Y’, 

f*(rM? PII s ,l(g XY yp: P’h (5) 

where p’ is the evident section induced from p by f. 

Question 10.5. Following the notation of the previous remark, is there a good 

formula for the composition of two 1.p.s.c. morphisms F + d and d -+ 9, relat- 

ing IT(F -+ Y) to ZI(F + 8) and IZ(& --f Y), of the corresponding fundamental 

groups in the pointed case? 
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